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Motivating setting - high dimensional predictors

I Routine to encounter massive-dimensional prediction &
variable selection problems

I We have y ∈ Y & x = (x1, . . . , xp)′ ∈ X
I Unreasonable to assume linearity or additivity in motivating

applications - e.g., epidemiology, genomics, neurosciences

I Goal: nonparametric approaches that accommodate large p,
small n, allow interactions, scale computationally to big p



Gaussian processes with variable selection

I For Y = < & X ⊂ <p, then one approach lets

yi = µ(xi ) + εi , εi ∼ N(0, σ2),

where µ : X → < is an unknown regression function

I Following Zou et al. (2010) & others,

µ ∼ GP(m, c), c(x , x ′) = φ exp

{
−

p∑
j=1

αj(xj − x ′j )
2

}
,

with mixture priors placed on αj ’s

I Zou et al. (2010) show good empirical results

I Bhattacharya, Pati & Dunson (2011) - minimax adaptive rates



Issues & alternatives

I Mean regression & computation challenging

I Difficult computationally beyond conditionally Gaussian
homoscedastic case

I Density regression interesting as variance & shape of response
distribution often changes with x

I Initial focus: classification from many categorical predictors

I Approach generalizes directly to arbitrary Y and X .



Classification & conditional probability tensors

I Suppose Y ∈ {1, . . . , d0} & Xj ∈ {1, . . . , dj},j=1,. . . ,p

I The classification function or conditional probability is

Pr(Y = y |X1 = x1, . . . ,Xp = xp) = P(y |x1, . . . , xp).

I This classification function can be structured as a
d0 × d1 × · · · × dp tensor

I Let Pd1,...,dp(d0) denote to set of all possible conditional
probability tensors

I P ∈ Pd1,...,dp(d0) implies P(y |x1, . . . , xp) ≥ 0 ∀y , x1, . . . , xp &∑d0
y=1 P(y |x1, . . . , xp) = 1



Tensor factorizations

I P = big tensor & data will be very sparse

I If P was a matrix, we may think of SVD

I We can instead consider a tensor factorization

I Common approach is PARAFAC - sum of rank one tensors

I Tucker factorizations express d1 × · · · × dp tensor
A = {ac1···cp} as

ac1···cp =

d1∑
h1=1

· · ·
dj∑

hp=1

gh1···hp

p∏
j=1

u
(j)
hjcj
,

where G = {gh1···hp} is a core tensor,



Our factorization (with Yun Yang)

I Our proposed nonparametric model for the conditional
probability:

P(y |x1, . . . , xp) =

k1∑
h1=1

· · ·
kp∑

hp=1

λh1h2...hp(y)

p∏
j=1

π
(j)
hj

(xj) (1)

I Tucker factorization of the conditional probability P

I To be valid conditional probability, parameters subject to

d0∑
c=1

λh1h2...hp(c) = 1, for any (h1, h2, . . . , hp),

kj∑
h=1

π
(j)
h (xj) = 1, for any possible pair of (j , xj). (2)



Comments on proposed factorization

I kj = 1 corresponds to exclusion of the jth feature

I By placing prior on kj , can induce variable selection &
learning of dimension of factorization

I Representation is many-to-one and the parameters in the
factorization cannot be uniquely identified.

I Does not present a barrier to Bayesian inference - we don’t
care about the parameters in factorization

I We want to do variable selection, prediction & inferences on
predictor effects



Theoretical support

The following Theorem formalizes the flexibility:

Theorem
Every d0 × d1 × d2 × · · · × dp conditional probability tensor
P ∈ Pd1,...,dp(d0) can be decomposed as (1), with 1 ≤ kj ≤ dj for

j = 1, . . . , p. Furthermore, λh1h2...hp(y) and π
(j)
hj

(xj) can be chosen

to be nonnegative and satisfy the constraints (2).



Latent variable representation

I Simplify representation through introducing p latent class
indicators z1, . . . , zp for X1, . . . ,Xp

I Conditional independence of Y and (X1, . . . ,Xp) given
(z1, . . . , zp)

I The model can be written as

Yi |zi1, . . . , zip ∼ Mult
(
{1, . . . , d0},λzi1,...,zip

)
,

zij |Xij = xj ∼ Mult
(
{1, . . . , kj}, π

(j)
1 (xj), . . . , π

(j)
kj

(xj)
)
,

I Useful computationally & provides some insight into the model



Prior specification & hierarchical model

I Conditional likelihood of response is (Yi |zi1, . . . , zip,Λ) ∼

Multinomial
(
{1, . . . , d0},λzi1,...,zip

)
I Conditional likelihood of latent class variables is

(zij |Xij = xj , π) ∼ Multinomial
(
{1, . . . , kj}, π

(j)
1 (xj), . . . , π

(j)
kj

(xj)
)

I Prior on core tensor λh1,...,hp =(
λh1,...,hp(1), . . . , λh1,...,hp(d0)

)
∼ Diri(1/d0, . . . , 1/d0)

I Prior on independent rank one components,(
π

(j)
1 (xj), . . . , π

(j)
kj

(xj)
)
∼ Diri(1/kj , . . . , 1/kj)



Prior on predictor inclusion/tensor rank

I For the jth dimension, we choose the simple prior

P(kj = 1) = 1− r

p
, P(kj = k) =

r

(dj − 1)p
, k = 2, . . . , dj ,

dj=# levels of covariate Xj .

I r=expected # important features, r̄=specified maximum
number of features

I Effective prior on kj ’s is P(k1 = l1, . . . , kp = lp) =

P(k1 = l1) · · ·P(kp = lp)I{]{j :lj>1}≤r̄}(l1, . . . , lp),

where IA(·) is the indicator function for set A.



Properties - Bias-Variance Tradeoff

I Extreme data sparsity - vast majority of combinations of
Y ,X1, . . . ,Xp not observed

I Critical to include sparsity assumptions - even if such
assumptions do not hold, massively reduces the variance

I Discard predictors having small impact & parameters having
small values

I Makes the problem tractable & may lead to good MSE



Illustrative example

I Binary Y & p binary covariates Xj ∈ {−1, 1}, j = 1, . . . , p

I The true model can be expressed in the form [β ∈ (0, 1)]

P(Y = 1|X1 = x1, . . . ,Xp = xp) =
1

2
+
β

22
x1 + · · ·+ β

2p+1
xp.

Effect of Xj decreases exponentially as j increases from 1 to p.

I Natural strategy: estimate P(Y = 1|X1 = x1, . . . ,Xp = xp) by
sample frequencies over 1st k covariates

]{i : yi = 1, x1i = x1, . . . , xki = xk}
]{i : x1i = x1, . . . , xki = xk}

,

& ignore the remaining p − k covariates.

I Suppose we have n = 2l (k ≤ l � p) observations with one in
each cell of combinations of X1, . . . ,Xl .



MSE analysis

I Mean square error (MSE) can be expressed as

MSE =
∑

h1,...,hp

E
{
P(Y = 1|X1 = h1, . . . ,Xp = hp)−

P̂(Y = 1|X1 = h1, . . . ,Xk = hk)
}2

, Bias2 + Var.

I The squared bias is

Bias2 =
∑

h1,...,hp

{
P(Y = 1|X1 = h1, . . . ,Xp = hp)−

EP̂(Y = 1|X1 = h1, . . . ,Xk = hk)
}2

= β22k+1
2p−k−1∑
i=1

(
2i − 1

2p+1

)2

=
β2

3
(2p−2k−2 − 2−p−2).



MSE analysis (continued)

I Finally we obtain the variance as

Var =
∑

h1,...,hp

VarP̂(Y = 1|X1 = h1, . . . ,Xk = hk)

= 2p−k+1
2k−1∑
i=1

1

2l

(
1

2
+

2i − 1

2k+1
β

)(
1

2
− 2i − 1

2k+1
β

)
=

1

3

{
(3− β2)2p+k−l−2 + β22p−k−l−2

}
.

I Since there are 2p cells, the average MSE for each cell equals

1

3

{
(3− β2)2k−l−2 + β22−k−l−2 + β22−2k−2 − β22−2p−2

}
.



Implications of MSE analysis

I #predictors p has little impact on selection of k

I k ≤ l & so second term small comparing to 1st & 3rd terms

I Average MSE obtains its minimum at k ≈ l/3 = log2(n)/3

I True model not sparse & all the predictors impact conditional
probability

I But optimal # predictors only depends on the log sample size



Borrowing of information

I Critical feature of our model is borrowing across cells

I Letting wh1,...,hp(x1, . . . , xp) =
∏

j π
(j)
hj

(xj), our model is

P(Y = y |X1 = x1, . . . ,Xp = xp) =∑
h1,...,hp

wh1,...,hp(x1, . . . , xp)λh1...hp(y),

with
∑

h1,...,hp
wh1,...,hp(x1, . . . , xp) = 1.

I View λh1...hp(y) as frequency of Y = y in cell
X1 = h1, . . . ,Xp = hp

I We have kernel estimate for borrowing information via
weighted avg of cell freqs



Illustrative example

I One covariate X ∈ {1, . . . ,m} with Y ∈ {0, 1} &
Pj = P(Y = 1|X = j)

I Naive estimate P̂j = kj/nj = ]{i : yi = 1, xi = j}/]{i : xi = j}
= sample freqs

I Alternatively, consider kernel estimate indexed by
0 ≤ c ≤ 1/(m − 1)

P̃j = {1− (m − 1)c}P̂j + c
∑
k 6=j

P̂k , j = 1, . . . ,m.

I Use squared error loss to compare these estimators



MSE for illustrative example

I E{L(P̂,P)} =
∑m

j=1 E (P̂j − Pj)
2 =

∑m
j=1

Pj (1−Pj )
nj

.

I E{L(P̃,P)} =
∑m

j=1 E (P̃j − Pj)
2 is fn of c with min at

c0 =
1

m

E{L(P̂,P)}
E{L(P̂,P)}+ 1

m−1

∑
i<j(Pi − Pj)2

∈
(

0,
1

m − 1

)
.

I When Pj ’s are similar, estimate P̃ can reduce risk up to only

1/m the risk of estimating P̂ separately.

I If Pj ’s are not similar, P̃ can still reduce the risk considerably
when the cell counts {nj} are small.



Setting & assumptions

I Data yn & X n for n subjects with pn � n (large p, small n)

I Assume dj = d for simplicity in exposition

I Putting true model P0 in our tensor form, assume

Assumption A.
∑pn

j=1 maxxj
∑d

hj=2 π
(j)
hj

(xj) <∞.

This is a near sparsity restriction on P0.

I Additionally assume true conditional probabilities strictly
greater than zero,

Assumption B. P0(y |x) ≥ ε0 for any x , y for some
ε0 > 0.



Posterior convergence theorem

I x1, . . . , xn independent from unknown Gn on {1, . . . , d}pn
I Let εn be a sequence with εn → 0, nε2

n →∞ and∑
n exp(−nε2

n) <∞.

I Assume the following conditions hold: (i) r̄n log pn ≺ nε2
n, (ii)

r̄nd
r̄n log(r̄n/εn) ≺ nε2

n, (iii) rn/pn → 0 as n→∞, and (iv)
there exists a sequence of models γn with size r̄n such that∑

j /∈γn maxxj
∑d

hj=2 π
(j)
hj

(xj) ≺ ε2
n.

I Denote d(P,P0) =∫ ∑d0
y=1

∣∣P(y |x1, . . . , xp)− P0(y |x1, . . . , xp)
∣∣Gn(dx1, . . . , dxp),

then

Πn

{
P : d(P,P0) ≥ Mεn|yn,X n

}
→ 0 a.s.Pn

0 .



Implications of theorem

I Posterior convergence rate can be very close to n−1/2 for
appropriate hyperparameter choices.

I For any α ∈ (0, 1), εn = n−(1−α)/2 log n satisfies conditions
I rn ≺ r̄n ≺ log n (# important predictors scales w/ log n)
I pn ≺ exp(nα) (# candidate predictors exponential in n)
I There exists a sequence of models γn with size r̄n such that

∑
j /∈γn

max
xj

d∑
hj=2

π
(j)
hj

(xj) ≺ nα−1 log2 n.

I Use rn = logd(n), r̄n = 2rn as default values for the prior in
applications.



Posterior computation

I Conditionally on {kj} simple Gibbs sampler - Dirichlet &
multinomial conditionals

I # components to update
∏p

j=1 kj - can blow up with p but all
but small number of kj = 1

I To update {kj} we can use RJMCMC - current vs doesn’t
scale very well computationally

I Two stage algorithm: (i) SSVS to estimate kj - acceptance
probs use approximated conditional marginal likelihoods; (ii)
conditionally on {k̂j} run Gibbs

I Scales efficiently & excellent performance in cases we have
considered



Simulation study

I N = 2, 000 instances, p = 600 covariates Xj ∈ {1, . . . , 4} &
binary response Y

I True model: 3 important predictors X9,X11 and X13

I Generate P(Y = 1|X9 = x9,X11 = x11,X13 = x13)
independently for each combination of (x9, x11, x13).

I To obtain optimal misclassification rate ∼ 15%, generated

f (U) = U2/{U2 + (1− U)2}, U ∼ Unif(0, 1).

I n training samples & N − n testing

I Training - n ∈ {200, 400, 600, 800}, with 10 random
training-test splits. Apply our approach to each split.



Simulation results - misclassification rate

Table: Testing Results for Synthetic Data Example. RF: random forests;
TF: Our tensor factorization model.

training size 200 400 600 800
aMSE of TF 0.144 0.042 0.024 0.010

Misclassification Rate of TF 0.503 0.288 0.189 0.168
Misclassification Rate of RF 0.496 0.482 0.471 0.472

aMSE =
1

4p

∑
x1,...,xp

{
P(Y = 1|x1, . . . , xp)− P̂(Y = 1|x1, . . . , xp)

}2
,



Simulation results - variable selection performance

Table: Columns 2-4 = inclusion probs of 9th,11th,13th predictors.
Col 5 = max inclusion prob across remaining predictors.
Col 6 = average inclusion probability across the remaining predictors.
Quantities are averages over 10 trials.

training size 9 11 13 Max Average
200 0.092 0.041 0.063 0.161 0.002
400 0.816 0.820 0.808 0.013 0.000
600 1.000 1.000 1.000 0.000 0.000
800 1.000 1.000 1.000 0.000 0.000



Application data sets

1. Promoter gene sequences: A, C, G, T nucleotides at p = 57
positions for N = 106 sequences & binary response (promoter
or not). 5-fold CV - n = 85 training & N − n = 21 test
samples in each split.

2. Splice-junction gene sequences: A, C, G, T nucleotides at
p = 60 positions for N = 3, 175 sequences. response classes:
exon/intron boundary (EI), intron/exon boundary (IE) or
neither (N). Test - n ∈ {200, 2540}.

3. Single Proton Emission Computed Tomography (SPECT):
cardiac patients normal/abnormal. 267 SPECT images & 22
binary features. Previously divided - n = 80 & N − n = 187.



Results

Table: RF: random forests, NN: neural networks, SVM: support vector
machine, BART: Bayesian additive regression trees, TF: Our tensor
factorization model. Misclassification rates are displayed.

Data CART RF NN LASSO SVM BART TF
Promoter (n=85) 0.236 0.066 0.170 0.075 0.151 0.113 0.066

Splice (n=200) 0.161 0.122 0.226 0.141 0.286 - 0.112
Splice (n=2540) 0.059 0.046 0.165 0.123 0.059 - 0.058
SPECT (n=80) 0.312 0.235 0.278 0.277 0.246 0.225 0.198

I At worst comparable classification performance with RF best
of competitors

I Particularly good relative performance as n decreases & p
increases



Variable selection - interpretability & parsimony

I Additional advantages in terms of variable selection

I In promoter data, selected nucleotides at 15th, 16th, 17th,
and 39th positions

I In splice data, 28th, 29th, 30th, 31st, 32nd and 35th positions
are selected.

I In SPECT data, 11st, 13rd and 16th predictors are selected.

I Each case obtained excellent classification performance based
on a small subset of the predictors.



Generalization - conditional distribution modeling

I Generalization: conditional distribution estimation

f (y |x) =
k∑

h=1

k1∑
h1=1

· · ·
kp∑

hp=1

πhh1···hp(x)K(y ; θhh1···hp),

I {πhh1···hp(x)} = core probability tensor of predictor-dependent
weights on a multiway array of kernels

I Motivated by above conditional tensor factorization for
classification, let

πhh1···hp = πh

p∏
j=1

π
(j)
hj

(xj).



Linear Tucker density regression

I Letting x ∈ X = [0, 1]p and ψj ∈ [0, 1], choose

π
(j)
1 (xj) = 1− xjψj , π

(j)
2 (xj) = xjψj , kj = 2, j = 1, . . . , p,

I Model linearly interpolates but otherwise is extremely flexible

I In simple case in which p = 1 & Gaussian kernel, we have

f (y |x) =
k∑

h=1

πh
{

(1− xψ)N(y ;µh1, τ
−1
h1 ) + xψN(y ;µh2, τ

−1
h2 )
}
,

I Induces the linear mean regression model

E (y |x) =

{ k∑
h=1

πhµh1

}
+

{ k∑
h=1

πhψ(µh2 − µh1)

}
x = β0 + β1x ,



Linear Tucker density regression - comments

I Different quantiles of f (y |x) change linearly with x but with
slopes that vary

I If k = 1, and τh1 = τh2 = τh, obtain simple normal linear
regression

I Density changes linearly - f (y |x = 0) =
∑

h πhN(y ;µh1, τ
−1
h1 )

to f (y |x = 1) =
∑

h πhN(y ;µh2, τ
−1
h2 ) as x increases

I As p increases, still interpolate linearly but accommodate
interactions

I Posterior computation single stage Gibbs sampler
(multinomial, Dirichlet, normal-gamma, Bernoulli, beta)



Joint tensor factorizations

I Focused in this talk on conditional Tucker factorizations

I Can also use probabilistic tensor factorizations for joint
modeling

I Very useful for huge sparse contingency table analysis

I Same ideas provide type of multivariate generalization of
current Bayes discrete mixtures

I Instead of a single cluster index, multiple dependent cluster
indices underlying each type of data
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